GLYCOGENESIS AND GLYCOGENOLYSIS
Glycogen

- Storage form of glucose in animals.
- Stored in the liver (6-8%) & muscle (1-2%).
- Quantity more in the muscle (~250g) than liver (75g) due to higher muscle mass.
- Stored as granules in the cytosol.
Glycogen vs. Fat as source of energy:

- Fat cannot be rapidly metabolised like glycogen.
- Fat cannot generate energy in the absence of oxygen.
- Brain requires a continuous supply of glucose, which come from glycogen.
- Fat cannot produce glucose.
Glycogenesis

- The glycogen synthesis occurs by a pathway distinctly different from the reversal of glycogen breakdown.
- It is the intracellular synthesis of glycogen from glucose.

Site and steps:

- The main site is the cytosol of liver and muscle cells. In the liver it forms 8-10% of its wet weight and in muscle it forms 1-2% of its wet weight. Most other cells may store minute amounts.
Glycogenesis :- Synthesis of glycogen from glucose.
Site :- Cytosol

Activated Glucose – UDP Glucose

Uridine Triphosphate (UTP)
Structure of Glycogen
Glycogenesis steps

Glucose → Glucose 6 Phosphate
- Hexokinase/glucokinase

Glucose 6 Phosphate → Glucose 1 phosphate
- Phosphoglucomutase

Glucose 1 phosphate → Uridine diphosphate Glucose
- UDPGlc pyrophosphorylase

Glycogenin → Glycogen primer

Uridine diphosphate Glucose → 1→4 glucosyl residues
- Glycogen Synthase

1→4 glucosyl residues → Glycogen (1→4and 1→6 glucosyl units)
- Branching Enzyme
Glycogen primer or Glycogenin required to initiate Glycogen synthesis.
Glycogen Synthase transfers Glucose from UDP-Glucose to the non-reducing end of the Glycogen to form α-1,4 linkages.

Branching enzyme :- Amylo α-1,4 → 1,6 transglucosidase (Glucosyl α-4-6 transferase)
Overall Reaction of Glycogenesis :-

\[(\text{Glucose})_n + \text{Glucose} + 2 \text{ ATP} \rightarrow (\text{Glucose})_{n+1} + 2 \text{ ADP} + \text{ Pi}\]
Glycogen Degradation (Glycogenolysis)

- Definition: It is the degradation of glycogen to glucose 6-phosphate & glucose in muscle & liver respectively.
- Substrate: Glycogen
- Site: Liver, Skeletal Muscles
- Subcellular site: Cytosol.
- Steps:
 1. Action of GLYCOGEN PHOSPHORYLASE
 2. Action of Debranching Enzyme
 3. Formation of Glucose.
Enzymes of Glycogenolysis :-

1. Glycogen Phosphorylase.
2. Debranching enzyme :
 \(\alpha-1:4\) Transferase, \(\alpha-1,6\) and \(\alpha-1,4\) glucosidase
3. Glucose - 6- phosphatase
glycogen phosphorylase

\[\rightarrow \]

Pi

glucose-1-phosphate

\[\rightarrow \]

debranching enzyme

glucotransferase

\[\rightarrow \]

H_{2}O

glucose

\[\rightarrow \]

debranching enzyme

glucosidase

\[\rightarrow \]

glycogen phosphorylase
- GLUCOSE-6-PHOSPHATASE ABSENT IN MUSCLES

- LYSOSOMAL DEGRADATION
 - Alpha 1,4 glucosidase.
 (acid maltase)
Regulation of glycogenesis & Glycogenolysis

Key enzyme of Glycogenesis- Glycogen Synthase

Key enzyme of Glycogenolysis- Glycogen Phosphorylase

Three Regulatory Mechanisms

1. Allosteric Regulation.
2. Hormonal Regulation.
3. Influence of Calcium.
Allosteric Regulation of Glycogen Metabolism

- When substrate availability & energy level is high, Glycogen synthesis is increased.
- When glucose concentration is low & energy level low, Glycogen breakdown is enhanced.
- In well-fed state, Glucose-6-P allosterically activates Glycogen Synthase. At the same time, allosterically inhibits Glycogen Phosphorylase.
- Free Glucose in the liver is also a allosteric inhibitor of Glycogen Phosphorylase.
Glycogen phosphorylase

Glucose-6-phosphate
ATP

Glucose (liver)

Ca$^{2+}$

Glycogen synthase

Glucose-1-phosphate

Glycogen

Glucose-6-phosphate
Hormonal Regulation of Glycogen Metabolism

- Hormones control Glycogen synthesis & degradation by covalent modification i.e., phosphorylation & Dephosphorylation.

- cAMP acts as second messenger.

- cAMP activates Protein Kinase.

- Protein Kinase causes phosphorylation of enzymes, either activating or deactivating them.
Allosteric Regulation of Glycogen Metabolism:

- When substrate availability & energy level is high, Glycogen synthesis is increased.
- When glucose concentration is low & energy level low, Glycogen breakdown is enhanced.
- In well-fed state, Glucose-6-P allosterically activates Glycogen Synthase. At the same time, allosterically inhibits Glycogen Phosphorylase.
- Free Glucose in the liver is also a allosteric inhibitor of Glycogen Phosphorylase.
Glycogen phosphorylase

Glycogen synthase

Glucose

Glucose-6-phosphate

ATP

Ca2+, AMP

Glucose-1-phosphate

Glucose-6-phosphate
Hormonal Regulation of Glycogen Metabolism :-

- Hormones control Glycogen synthesis & degradation by covalent modification i.e., phosphorylation & Dephosphorylation.

- cAMP acts as second messenger.

- cAMP activates Protein Kinase.

- Protein Kinase causes phosphorylation of enzymes, either activating or deactivating them.
ATP → cAMP → cAMP dependent Protein Kinase → Phosphorylation

Glucagon, Epinephrine + Adenylate cyclase → cAMP → Phosphodiesterase → 5’AMP

Insulin + Phosphodiesterase → 5’AMP

- Inactive Glycogen synthase
- Active Glycogen Phosphorylase
Effect of Calcium:

- Muscle contracts

- Ca^{2+} ions released from sarcoplasmic reticulum of muscle

- Ca^{2+} ions bind to calmodulin (calcium binding protein)

- Calcium calmodulin complex directly activates Protein Kinase without the involvement of cAMP.
Glycogen Storage Diseases

Type I: VON GIERKE’S DISEASE (G-6-phosphatase)

Commonest
- Fasting Hypoglycemia.
- Adrenaline has no effect.
- Lactic Acidosis.
- Hyperuricemia.
- Liver Enlargement – Cirrhosis.
- TYPE II (POMPE’S): Lysosomal Maltase (α-1,4 glucosidase).
- TYPE III (CORI’S / LIMIT DEXTRINOSIS): Debranching Enzyme
- TYPE V (McARDLE’S): Muscle Phosphorylase
- TYPE VI (HER’S): Liver Phosphorylase
- TYPE VII (TARUI’S): Phosphofructokinase
- TYPE VIII (PHOSPHORYLASE KINASE)
- TYPE IX (GLYCOGEN SYNTHASE)
QUESTIONS ???

1) What is Glycogen?
2) Monosaccharide B) Disaccharide C) Homopolysaccharide D) Heteropolysaccharide
2) It is a Storage form of
A) Carbohydrate B) Protein C) Lipid D) All of above
3) Key enzyme of Glycogenesis-
A) Hexokinase B) Glucose - 6- phosphatase C) Glycogen Phosphorylase D) Glycogen Synthase
4) Key enzyme of Glycogenolysis
A) Glucose - 6- phosphatase B) Glycogen Phosphorylase C) Glycogen Synthase D) None of Above
5) Site of Glycogenesis
A) Mitochondria B) Cytosol C) Lysosome D) Nucleus
ANSWERS

1) What is Glycogen?
A) Monosaccharide B) Disaccharide C) Homopolysaccharide D) Heteropolysaccharide

2) It is a Storage form of
A) Carbohydrate B) Protein C) Lipid D) All of above

3) Key enzyme of Glycogenesis-
A) Hexokinase B) Glucose-6-phosphatase C) Glycogen Phosphorylase D) Glycogen Synthase

4) Key enzyme of Glycogenolysis
A) Glucose-6-phosphatase B) Glycogen Phosphorylase C) Glycogen Synthase D) None of Above

5) Site of Glycogenesis
A) Mitochondria B) Cytosol C) Lysosome D) Nucleus